
How to Follow Software Users

Lev Manovich
softwarestudies.com

March 2012

“Big data” is the new media of 2010s. Like previous waves of computer

technologies, it changes what it means to know something and how we can

generate this knowledge. Thanks to the efforts of Digital Humanities Office1 at

National Endowment of Humanities (U.S. National funding agency for humanities

research) which together with other agencies organized Humanities High

Performance Computing program in 2008, and Digging Into Data competitions in

2009 and 2011, as well as the few pioneering projects by individual humanities

researchers and their labs, big data paradigm has now entered the humanities.

An article in New York Times from November 16, 2010 (part of their Humanities

2.0 series) boldly stated: “The next big idea in language, history and the arts?

Data.”2 While digitization of historical cultural artifacts seemingly produces such

data, representing cultural activities as data which can be analyzed with

computers is a challenge in itself.

So far, all big data projects in digital humanities that I am aware of used digitized

cultural artifacts from the past. If we want to apply the big data paradigm to the

study of contemporary interactive software-driven media, we are facing

fascinating theoretical questions and challenges. What exactly is “big data” in the

case of interactive media? How do we study the interactive temporal experiences

1 (http://www.neh.gov/odh/.
2 http://www.nytimes.com/2010/11/17/arts/17digital.html.

http://www.softwarestudies.com/
http://www.neh.gov/odh/
http://www.nytimes.com/2010/11/17/arts/17digital.html

of the users, as opposed to only analyzing the code of software programs and

contents of media files?

This article provides possible answers to these questions. They are based on the

research at Software Studies Initiative which I direct at University of California,

San Diego (UCSD) and California Institute for Telecommunication and

Information (Calit2), and our current NSF Eager funded project where we are

analyzing the records of the interactions of large number of users with massive

virtual world Scalable City.3

Software Studies Initiative was founded in 2007 to work on two interrelated

programs: 1) study of software and its use in contemporary societies using the

methods of humanities, social sciences and new media theory; 2) study of

cultural contents and cultural processes using software-based methods. In other

words, software for us is both a subject of investigation, and an intellectual

technology which joins other existing humanities methods for reading culture.

The first perspective is a part of “software studies” agenda as it is usually

understood4; the second falls within “digital humanities.”5 (Since this term is

currently used very broadly to include all kinds of digital work in humanities

ranging, from curating online collections to computational analysis and

visualization of big cultural data, we use a separate term “cultural analytics” to

refer to the latter.)

3 http://www.scalablecity.net/.
4 See the introduction to Software Studies series at The MIT Press:
http://mitpress.mit.edu/catalog/browse/browse.asp?btype=6&serid=1
79.
5 http://lab.softwarestudies.com/2007/05/about-software-studies-
ucsd.html.

http://www.scalablecity.net/
http://mitpress.mit.edu/catalog/browse/browse.asp?btype=6&serid=179
http://mitpress.mit.edu/catalog/browse/browse.asp?btype=6&serid=179
http://lab.softwarestudies.com/2007/05/about-software-studies-ucsd.html
http://lab.softwarestudies.com/2007/05/about-software-studies-ucsd.html

Although during 20+ years of its existence, new media studies (and its more

recently developed “software studies” part) generated thousands of books and

conferences and tends of thousands of papers that already analyzed many

dimensions of interactive media. (The MIT Press alone currently lists 368 books

in its “new media” category6). However, if we want to use big data paradigm to

study interactive media, we need to interrogate this type of media theoretically

from additional perspectives. The first part of my article offers this analysis; the

second uses the result of the analysis to offer a methodology for the study of

interactive media as “big data.”7

What is the “Data” in Interactive Media?

The use of software re-configures most basic social and cultural practices and

makes us rethink the concepts and theories we developed to describe them. As

one example of this, consider the modern “atom” of cultural creation,

transmission, and memory: a “document”, i.e. some content stored in a physical

form, which is delivered to consumers via physical copies (books, films, audio

record), or electronic transmission (television). In software culture, we no longer

have “documents,” ”works,” “messages” or “recordings” in 20th century terms.

Instead of fixed documents whose contents and meaning could be determined by

6
http://mitpress.mit.edu/catalog/browse/browse.asp?cid=12&btype=1.
7 This article further develops the ideas which I first articulated in the
proposal Digging Into Born Digital Data: Methods For The Analysis Of
Interactive Media, prepared by me, Jeremy Douglass, Matthew Fuller,
and Olga Goriounova for 2009 Digging Into Data Competition. The text
of the article is based on my introduction to the book manuscipt
Software Takes Command (revised 2012 version) currently under
consideration by The MIT Press.

http://mitpress.mit.edu/catalog/browse/browse.asp?cid=12&btype=1

examining their structure and content (a typical move of the 20th century cultural

analysis and theory, from Russian Formalism to Literary Darwinism8) we now

interact with dynamic “software performances.” I use the word “performance”

because what we are experiencing is constructed by software in real time. So

whether we are exploring a dynamic web site, play a video game, or use an app

on a mobile phone to locate particular places or friends nearby, we are engaging

not with pre-defined static documents but with the dynamic outputs of a real-time

computation happening on our device and/or the server. Computer programs can

use a variety of components to create these performances: design templates,

files stored on a local machine, media from the databases on the network server,

the real-time input from a mouse, touch screen, joystick, our moving bodies, or

another interface, etc. Therefore, although some static documents may be

involved, the final media experience constructed by software usually does not

correspond to any single static document stored in some media. In other words,

in contrast to paintings, literary works, music scores, films, industrail designs, or

buildings, a critic can’t simply consult a single “file” containing all of work’s

content.

Even in such seemingly simple cases such as viewing a PDF document or

opening an photo in a media player, we are already dealing with “software

performances” - since it is software which defines the options for navigating,

editing and sharing the document, rather than the document itself. Therefore

examining the PDF file or a JPEG file the way twentieth century critics would

examine a novel, a movie, or a TV program will only tell us some things about the

experience we get when we interact with this document via software – but not

everything. This experience is equally shaped by the interface and the tools

provided by software. This is why the examination of the tools, interfaces,

assumptions, concepts, and the history of cultural software – including the

8 http://en.wikipedia.org/wiki/Darwinian_literary_studies, acccessed
March 14, 2012.

http://en.wikipedia.org/wiki/Darwinian_literary_studies

theories of its inventors who in the 1960s-1970s have defined most of these

concepts – is essential if we are to make sense of contemporary media.

This shift in the nature of what constitutes a media “document” also calls into

question well-established cultural theories that depend on this concept. Consider

the intellectual paradigm that dominated the study of media since the 1950s –

“transmission” view of culture developed in Communication Studies.

Communication scholars have taken the model of information transmission

formulated by Claude Shannon in his 1948 article A Mathematical Theory of

Communication (1948)9 and the subsequent book published with Warren Weaver

in 1949,10 and applied its basic model of communication to mass media. The

paradigm described mass communication (and sometimes culture in general) as

a communication process between the authors who create and send “messages”

and audiences that “receive” them. According to this paradigm, the messages

were not always fully decoded by the audiences for technical reasons (noise in

transmission) or semantic reasons (they misunderstood the intended meanings.)

Classical communication theory and media industries considered such partial

reception a problem; in contrast, in his influential 1980 article

“Encoding/decoding”11 the founder of British Cultural Studies Stuart Hall argued

that the same phenomenon is positive. Hall proposed that the audiences

construct their own meanings from the information they receive. Rather than

being a communication failure, the new meanings are active acts of intentional

reinterpetation of the sent messages. But both the classical communication

9 C.E. Shannon, "A Mathematical Theory of Communication", Bell
System Technical Journal, vol. 27, pp. 379–423, 623-656, July,
October, 1948.
10 Claude E. Shannon, Warren Weaver. The Mathematical Theory of
Communication. Univ of Illinois Press, 1949.
11 Hall, Stuart (1980): 'Encoding/decoding'. In Centre for
Contemporary Cultural Studies (Ed.): Culture, Media, Language.
London: Hutchinson.

http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
http://en.wikipedia.org/wiki/Bell_System_Technical_Journal
http://en.wikipedia.org/wiki/Bell_System_Technical_Journal
http://en.wikipedia.org/wiki/Claude_E._Shannon

studie and cultural studues implicitly took for granted that the message was

something complete and definite – regardless of whether it was stored in physical

media (e.g., magnetic tape) or created in real time by a sender (a live TV

broadcast). Thus, the receiver of communication was assumed to read all of

advertising copy, see a whole movie, or listen to the whole song and only after

that s/he would interpret it, misinterpret it, assign her own meanings, appropriate

it, remix it, etc.

While this assumption has already been challenged by the introduction of DVR

(digital video recorder) in 1999 that led to the phenomenon of time shifting, it

simply does not apply to interactive software-driven media. The interfaces of

media access applications, such as web browsers and search engines, the

hyperlinked architecture of world wide web, and the interfaces of particular online

media services which offer large numbers of media artifacts for playing, preview

and/or purchase (Amazon, Google Play, iTunes, Rhapsody, Netflix, etc.)

encourage people to “browse”, quickly moving instantly both horizontally between

media (from one seach result to the next, from one song to another sond, etc.)

and vertically, though the media artifacts (e.g., from the contents listing of a

music CD to a particular track). They also made it easy to start playing/viewing

media at an arbitrary point, and leave it at any point. In other words, the

“message” which the user “receives” is not just actively “constructed” by her

(through a cognitive interpretation) but also actively “managed” (defining what

information she is receiving and how.)

It is at least as important that when a user interacts with a software application

that presents media content, this content often does not have any definite finite

boundaries. For instance, a user of Google Earth is likely to experience a

different “earth” every time she is accessing the application. Google could have

updated some of the satellite photographs or added new Street Views; new 3D

buildings, new layers and new information on already existing layers were also

likely to be added. Moreover, at any time a user of the application can load more

geospatial data created by other users and companies by either selecting one of

the options in Add menu (Google Earth 6.2.1 interface), or directly opening a

KLM file. Google Earth is a typical example of a new type of media enabled by

the web – an interactive “document” which does not have all of its content pre-

defined. Its content changes and grows over time.

In some cases this may not affect in any significant way the larger “messages”

“communicated” by the software application, web service, a game, or other type

of interactive media. For example, in the case of Google Earth, regardless of

which layers are turned on and which new content has been added by users

since your last visit, this does not affect one of its built-in conventions –

representation of the earth using the General Perspective Projection (a particular

map projection method of cartography12).

However, since the user of Google Earth can also add her own media and

information to the base representation provided by the application, creating

complex and media rich projects on top of existing geoinformation, Google Earth

is not just a “message.” It is a platform for users to build on. And while we can

find some continity here with the users creative reworking of commercial media in

the 20th century – pop art and appropriation, music remixes, slash fiction and

video13, and so on, the differences are larger than the similarities.

This shift from messages to platforms was in the center of the web

transformation around 2004-2006, called Web 2.0. The 1990s web sites

12 http://en.wikipedia.org/wiki/Google_earth#Technical_specifications,
accessed March 14, 2012.
13 See, for instance, Constance Penley, "Feminism, Psychoanalysis,and
the Study of Popular Culture." In Grossberg, Lawrence, ed., Cultural
Studies (Rutledge, 1992).

http://en.wikipedia.org/wiki/Google_earth#Technical_specifications

presenting particular content created by others (and thus, communicating

“messages”) were supplemented by social networks and social media sites

where the users can share, comment on, and tag their own media. Wikipedia

article on Web 2.0 describes these differences as follows: “A Web 2.0 site allows

users to interact and collaborate with each other in a social media dialogue as

creators (prosumers) of user-generated content in a virtual community, in

contrast to websites where users (consumers) are limited to the passive viewing

of content that was created for them. Examples of Web 2.0 include social

networking sites, blogs, wikis, video sharing sites, hosted services, web

applications, mashups and folksonomies.”14 For example, to continue with

Google Earth cases, users added many types of global awareness information,

including fair trade certification, Greenpeace data, and United Nations Millennium

Development Goals Monitor.15 In another example, you can incorporate Google

Maps, Wikipedia, or content provided by most other large web 2.0 sites directly in

your web mashup – an even more direct way of taking the content provided by

web services and using it to craft your own custom platforms.

The wide adoption of Web 2.0 services along with various web-based

communication tools (online discussion forums about every popular software,

collaborative editing on Wikipedia, Twitter, etc.) enables quick identifications of

omissions, selections, censorship and other types of "bad behavior" by software

publishers – another feature which separates content distributed by web-based

companies from mass media of the 20th century. For example, every article on

Wikipedia about a Web 2.0 service includes a special section about

controversies, criticism, or errors.

In many cases, people can also use alternative open source equivalents of paid

and locked applications. Open source and/or free software (not all free software

14 http://en.wikipedia.org/wiki/Web_2.0, accessed March 14, 2012.
15 http://en.wikipedia.org/wiki/Google_earth, accessed March 14,
2012.

http://en.wikipedia.org/wiki/Social_media
http://en.wikipedia.org/wiki/Prosumer
http://en.wikipedia.org/wiki/User-generated_content
http://en.wikipedia.org/wiki/Virtual_community
http://en.wikipedia.org/wiki/Consumer
http://en.wikipedia.org/wiki/Content_(media_and_publishing)
http://en.wikipedia.org/wiki/Social_networking_site
http://en.wikipedia.org/wiki/Social_networking_site
http://en.wikipedia.org/wiki/Blog
http://en.wikipedia.org/wiki/Wiki
http://en.wikipedia.org/wiki/Video_sharing
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Web_application
http://en.wikipedia.org/wiki/Web_application
http://en.wikipedia.org/wiki/Mashup_(web_application_hybrid)
http://en.wikipedia.org/wiki/Folksonomy
http://en.wikipedia.org/wiki/Web_2.0
http://en.wikipedia.org/wiki/Google_earth

is open source) often allow for additional ways of creating, remixing and sharing

both content and new software additions. (This does not mean that open source

software always uses different assumptions and key technologies than the

commercial software.) For exampe, one can choose to use a number of

alternatives to Google Maps and Google Earth - OpenStreetMap, Geocommons,

WorldMap, and others which all have open source or free software licenses.16

(Interestingly, commercial companies also often use data from such free

collaboratively created systems because they contain more information than the

companies’ own systems. For example, OpenStreet Map, which by early 2011

had 340,000 contributors17, is used by Flickr and Foursquare.18) A user can also

examine the code of open-source software to fully understand its assumptions

and key technologies.

Continuosly changing and growing content of web services and sites; variety of

mechanism for navigation and interaction; the abilities to add one own’s content

and mashup content from various sources together; architectures for

colloborative authoring and editing; mechanisms for monitoring the providers – all

these mechanisms clearly separate interactive networked software-driven media

from the 20th century media documents. But even when a user is working with a

single local media document that is stored in a single computer file (a rather rare

situation these days), such a document mediated through software interface has

different identity than a 20th century media document. The user’s experience is

still only partly defined by the file’s content and its organization. The user is free

to navigate the document, choosing both what information to see and the

sequence in which she is seeing it. And while “old media” (with the exception of

16 http://geocommons.com/, http://www.openstreetmap.org,
worldmap.harvard.edu, accessed March 14, 2012.
17 http://en.wikipedia.org/wiki/Counter-mapping#OpenStreetMap,
accessed March 27, 2012.
18
http://en.wikipedia.org/wiki/OpenStreetMap#Derivations_of_OpenStre
etMap_Data, accessed March 27, 2012.

http://geocommons.com/
http://www.openstreetmap.org/
http://en.wikipedia.org/wiki/Counter-mapping#OpenStreetMap
http://en.wikipedia.org/wiki/OpenStreetMap#Derivations_of_OpenStreetMap_Data
http://en.wikipedia.org/wiki/OpenStreetMap#Derivations_of_OpenStreetMap_Data

20th century broadcasting) also provided this random access, the interfaces of

software-drivem media players/viewers provide many additional ways for

browsing media and selecting what and how to access.

For example, Adobe Acrobat can display thumbnails of every page in a PDF

document; Google Earth can quickly zoom in and out from the current view;

online digital libraries, databases and repositories containing scientific articles

and abstracts such as the ACM Digital Library, IEEE Xplore, PubMed, Science

Direct, SciVerse Scopus, and Web of Science show articles which contain

references to the one you currently selected.19 Most importantly, these new tools

and interfaces are not hard- wired to the media documents themselves (such as

a random access capacity of a printed book) or media access machines (such as

a radio); instead they are part of the separate software layer. This media

architecture enables easy addition of new navigation and management tools

without any change to the documents themselves. For instance, with a single

click, I can add sharing buttons to my blog, thus enabling new ways of circulation

for its content. When I open a text document in Mac OS Preview media viewer, I

can highlight, add comments and links, draw and add thought bubbles.

Photoshop allows me to save my edits on separate “adjustment layers,” without

modifying the original image. And so on.

How to Follow Software Users

These new properties of interactive software-driven networked media require

new methods and new theoretical concepts for its study:

19
http://en.wikipedia.org/wiki/List_of_academic_databases_and_search
_engines, accessed March 14, 2012.

http://en.wikipedia.org/wiki/List_of_academic_databases_and_search_engines
http://en.wikipedia.org/wiki/List_of_academic_databases_and_search_engines

1. We need to be able to record and analyze interactive experiences, i.e.

concrete temporal interactions of particular users with the software – as opposed

to only analyzing media “documents” (i.e., the elements which are used to

construct these experiences). For example, we should follow the users as they

navigate though a web site – as opposed to limiting ourselves to studying the

content of this site. We should follow different players as they progress through

the video game – as opposed to using only our own gameplay as the basis for

the analysis. We should follow the visitors of an interactive installation as they

explore the space of possibilities defined by the designer – the possibilities which

only become actual events when the visitors act on them.

(Here I can make a parallel with the famous shift in science studies created by

Bruno Latour and his colleagues when they turned attention from studying

scientific documents to following scientists in the laboratories – articulated in a

number of Latour’s books such as Science in Action: How to Follow Scientists

and Engineers through Society.20 In a parallel fashion, we need to follow users

as they interact with software, rather than analysing media documents by

themselves.)

Why this is so important? What is the difference between capturing the process

of user interaction with traditional media and using such records for analysis,

versus doing the same with software-driven media? After all, we can use various

technologies to capture traces of person’s emotional and cognitive states while

she is reading a book, watching a movie, moving through a built environment, or

interacting with other older media forms. We can capture indications of brain

activity using EEG or MRI; record eye movements; track pulse; capture galvanic

skin response and use other biometric techniques. (By 2012, a number of

20 Bruno Latour. Science In Action: How to Follow Scientists and
Engineers Through Society (Harvard University Press, 1987).

neuromaketing companies were already working with Hollywood studios to

record such information from test viewers, helping directors to refine editing of

feature films and product placement21 - a new service which originated in the

academic research on “neurocinematics.”22)

When we record and analyze movements of a cursor on the screen, spatial

trajectory of user-controlled game character, or other elements of an interactive

experience with a software-driven media, there is a qualitative difference. What

we are capturing and analyzing in all these cases is the actual “work” as it is co-

created by the software and user’s interactions – the work which only emerges

during this interaction and which is different from session to session and from

user to user. This is different from capturing biometric data of test audiences of a

film which was created beforehand.

While all cultural experiences can be described as forms of interaction, software-

driven interactive media represents a new form of human culture. Certainly, a

recipient of a non-interactive text can be also said to cognitively construct her

own version of the text. However, the actual material «input» (i.e., a text on the

page, a movie shown in a movie theatre, an interior of a building, the shape of a

product, etc.) remains the same for all the users (at least, currently). With

software-driven interaction, this “input” is likely to change every time are you

accessing the application. It is co-created by the software and my behavior at the

moment of the interaction.

21 http://www.fastcompany.com/1731055/oscars-avatar-neurocinema-
neuromarketing, accessed March 14, 2012.
22 Uri Hasson, Ohad Landesman, Barbara Knappmeyer, Ignacio
Vallines, Nava Rubin, and David J. Heeger. “Neurocinematics: The
Neuroscience of Film.” Projections, Volume 2, Issue 1, Summer 2008:
1–26. http://www.cns.nyu.edu/~nava/MyPubs/Hasson-
etal_NeuroCinematics2008.pdf.

http://www.fastcompany.com/1731055/oscars-avatar-neurocinema-neuromarketing
http://www.fastcompany.com/1731055/oscars-avatar-neurocinema-neuromarketing
http://www.cns.nyu.edu/~nava/MyPubs/Hasson-etal_NeuroCinematics2008.pdf
http://www.cns.nyu.edu/~nava/MyPubs/Hasson-etal_NeuroCinematics2008.pdf

For example, a video game which you are will be playing is likely to be different

from the game I will be playing. Why? Because the probability that another player

follows exactly the same spatial trajectory through a level, solving all puzzles in

exactly the same sequence, and duplicating all my other actions is close to 0.

(And since the game is likely to use a random number generator to control

generation and actions of objects and enemies, this adds another level of

variability.) Similarly, the contents of amazon.com home page will certainly be

different every time I visit it, because the site software automatically customizes

parts of page's content (”Your Recent History” area of the page,

recommendations, etc.) based on the data about my previous browsing and

purchasing behavior, and behaviors of people who made similar choices. And

while at the moment of this writing the interfaces of computers and mobile

devices do not change from one session to another – programs do not re-

arrange themselves on the desktop, and document icons do not modify their

color to reflect how often they have been accessed before – it is certainly feasible

to give them more “intelligence”. (Researchers in the field called «augmented

cognition» are developing interfaces and learning environments which would

continuously change based on the input from sensors monitoring human bodily

and brain activity.23)

Any analysis of software-driven interactive media need to take into account its

fundamental co-creation (by users and software) geneology, and its built-in

variability. But if we can’t simply analyze media document, how to we go about

capturing multiple “software performances” and user experiences?24 In other

words: how do we follow software users?

23 http://www.augmentedcognition.org/, accessed March 12, 2012.
24 Some of the points in the following analysis were originally
developed in a grant proposal I submitted with Mathhew Fuller to 2009
Digging Into Data competition. Lev Manovich and Mathew Fuller, PIs.
Digging Into Born Digital Data: Methods For The Analysis Of
Interactive Media, 2009.

http://www.augmentedcognition.org/

Culture always involved interactions between audiences and cultural objects, or

between performers and participants. However, until recently recording and

analyzing these interactions was difficult and expensive. Only Hollywood movie

studies and big advertising agencies could afford special facilities where simple

emotion responses of selected viewers to commercials or movie endings could

be recorded and combined with other focus group techniques such as interviews

and questioners. As already mentioned above, now capturing emotional

responses can be done with EEG, MRI and other biometric techniques, but most

of them are still rather expensive, and their use and interpretation requires

special training. However, tracking users interaction with software itself is trivial.

Why? Because the very phenomenon of interaction is made possible by software

continuously monitoring the interface inputs. Without this monitoring, there is no

interaction. A software application is continuously capturing key presses, mouse

movements, menu selections, finger gestures over a touch surface, voice

commands, and other types of inputs. These recorded inputs trigger various

actions provided by the application – zooming into a location on a map, firing a

weapon in a game, altering an image with a paintbrush tool, finding the web

pages which match user query, and so on.

Graphical User Interfaces (GUI) used today by all application software also

require capturing many kinds of user input for another reason. If you use UNIX,

you know that after you enter a command, often you don't get any feedback –

unless you did not use command syntax correctly and then you get an error

message. Similarly, the edits in HTML code do not become visible until you

preview HTNL document in a web browser. But in programs which use GUI, all

user input is explicitly acknowledged. Computer provides immediate textual,

visual and/or sound feedback. If I am editing a document, it immediately shows

my changes. In fact, as I am writing this sentence, every time I press a key on

the keyboard, Microsoft Word captures this key press and immediately updates

the document shown on the screen. (This interface can be said to simulate 19th

century typewriter interface where pressing a key resulted in a physical

movement which printed the corresponding letter on the paper.) Another

examples of how interfaces captures and stores a sequence of user inputs is a

History window (or history command in UNIX) which displays the sequence of all

entered commands during a user session.

Since capturing user inputs is already a fundamental principle of modern

interactive software interfaces, the software can be easily modified to store

values of these inputs – rather than erasing them as soon as the action is

triggered. (This can be as simple as writing each new value of a variable to a file

– an action which can be added with a single line of code.) While in principle

recording and storing users inputs was always possible from the early days of

software culture, the shift from desktop to web computing in the 1990s have

turned this possibility into a fundamental component of a “software-media

complex.” Since dynamic web sites and services are operated by software

residing on company's servers, it is easy to log the details of their interactions.

For example, each web server keeps detailed information on all visits to a given

web site. A separate category of software and services exemplified by Google

Analytics emerged to help a user analyze this information so it can be used to

fine tune the web design.

Following initial example of Google Analytics introduced in 2005, today social

media companies make available to the users some of the recorded information

about visitors’ interactions with their site, blog, or account; the companies even

provide interactive visualizations to help them figure out patterns and make their

web offerings more successful. I can study this personal analytics for my web site

and also for our lab blog softwarestudies.com, our Tube and Flickr accounts, and

our Facebook page, seeing the impact of each separate blog post, photo, video,

and update. The companies also make available to public some of this

information for all web pages or accounts. For example, YouTube displays

statistics below every video, showing graphically the number of views of over

time, the important referrals, and basic demographics of the visitors. However,

other captured data remains private and is used to improve algorithms, generate

recommendations, and serve ads.25

Game companies capture many details of all gameplay in their massively

multiplayer online games (MMOs); this information is then used internally by the

companies to refine game design. During development of new games, the

companies are also systematically record and analyze the game play of dozens

of testers (this practice is called “game analytics.”) Another example of how

recording and using information about users' interactions with software is at the

core of contemporary web and media industries is provided by Google search

algorithms.26 While the algorithms use hundreds of variables to calculate which

web pages are most relevant to a particular query, one of the inputs is the

information about which of the pages previously returned to the same query other

users have clicked on.

Social media and e-commerce sites such as YouTube and Amazon also capture

and analyze user inputs, feeding this data into their recommendation engines. As

Frank Kessler and Mirko Tobias Schaffer point out in the case of YouTube, the

operations which for a user appear as being marginal to the primary activity of

watching videos – tagging, commenting, and reporting some videos as

inappropriate - are central to the service operations in general: “All these

25 See http://en.wikipedia.org/wiki/Social_search,
http://en.wikipedia.org/wiki/Recommendation_system,
http://en.wikipedia.org/wiki/Semantic_targeting, accessed March 14,
2012.
26 http://www.google.com/competition/howgooglesearchworks.html,
accessed March 27, 2012.

http://en.wikipedia.org/wiki/Social_search
http://en.wikipedia.org/wiki/Recommendation_system
http://en.wikipedia.org/wiki/Semantic_targeting
http://www.google.com/competition/howgooglesearchworks.html

operations that YouTube offers its users – or rather which must be used for

YouTube to generate metadata necessary for its functioning – are at first sight

ancillary options and additional services. Quite on the contrary, however, they

actually provide the indispensable basis of the database's information

management… In fact, every single click on one of these links to a clip, however

random or accidental this choice may be, does feed into a database as well.27

Since YouTube site not explain its technologies, and the papers presented by its

engineers at conferences only go into details about some of them, I can't verify if

all details in this analysis is correct. 28 We also don’t know whether all types of

user captured and stored by YouTube are actually used in its algorithms. Finally,

what ever is captured certainly does not get stored in a single database. (Part of

Software Studies mission is to encourage scholars to be more precise in their

analysis of software, because all these details matter.) However, the general

argument by Kessler and Schaffer is correct - web and media companies do

capture and parse user inputs in order to refine their products and offerings, and

this captured data often is very important to their business, even though for users

this may not be fully visible.

27 Frank Kessler and Mirko Tobias Schaffer, «Navigating YouTube:
Constituting a Hybrid Information Managment System.» Jean Burgess,
Patricia G. Lange and Mirko Tobias Schafer, eds. The YouTube Reader
(National Library of Sweden, 2009), 284-285.
28 James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy,
Taylor Van Vleet, Ullas Gargi, Sujoy Gupta, Yu He, Mike Lambert,
Blake Livingston, and Dasarathi Sampath. 2010. The YouTube video
recommendation system. In Proceedings of the fourth ACM conference
on Recommender systems (RecSys '10). ACM, New York, NY, USA,
293-296. DOI=10.1145/1864708.1864770.
http://doi.acm.org/10.1145/1864708.1864770; Renjie Zhou,
Samamon Khemmarat, and Lixin Gao. 2010. The impact of YouTube
recommendation system on video views. In Proceedings of the 10th
annual conference on Internet measurement (IMC '10). ACM, New
York, NY, USA, 404-410. DOI=10.1145/1879141.1879193
http://doi.acm.org/10.1145/1879141.1879193.

http://doi.acm.org/10.1145/1864708.1864770

Cultural disciplines should also take advantage of these kinds of data (and yes,

of course you should ask users first if its OK to record it and analyze it). Too

often researchers rely only on their intuitions and personal experience with these

products. Having to face the actual facts about the actual behavior of many

concrete users can be quite refreshing. In practice, this means that in addition to

theorizing about an imaginary abstract user (typical strategy in humanities), or

using surveys to ask people to report on their cultural experiences, or doing

ethnography (communication studies), we can also capture and subsequently

analyze data about people’s actual interactions with software artifacts.

In doing this, we will align cultural analysis with the processes of culture

production in software society - using the same methods, but for different

purposes. For example, the designers of software applications and content

capture data about experiences of test users, and then use this data to refine

their offerings. As cultural critics, we may capture the data about the experiences

of the actual users in order to better understand what these experiences are,

map their variability, and – most importantly - compare them across many

products to make visible larger cultural patterns. For example, if an analytics

team at a particular game company usually only analyzes the games currently

being developed only at this company, we can take a broader look - analyzing

gameplay across many games (within a single genre or multiple genres), or the

different versions of game during decades of their evolution. 29 (If you are getting

scared reading this proposal for adopting the software-based techniques used by

29 Ben Middler looks at the history of gameplay recordings and its uses
in his 2009 article “Generations of Game Analytics, Achievements and
High Scores”, Eludamos. Journal for Computer Game Culture, Vol 3,
No 2
(2009).http://journals.sfu.ca/eludamos/index.php/eludamos/article/vi
ewArticle/66.

companies to create media for its analysis by humanists, I am sorry for dragging

you into the 21st century..)

Since we usually don’t have acess to the code of commercial media products, we

can use other methods for capturing interactions. One method that is already

been systematically used in my Software Studies lab since 2008 is capturing

video of a gameplay.30 Our approach is turn each game session into an

equivalent of a film by recording a video of a gamer’s screen during the

gameplay. (This process is similar to the use of screen capture software to

produce training video for software applications.) Once we create such a

recording, we can use it to analyze a game experience as a process of changes

over time. We can graphically represent rhythms and patterns in a single game

play session. We can also aggregate the data from many sessions to visualize a

space of possible experiences enabled by a particular game. We can further

create visual “landscapes” of larger areas of video game culture, with sets of data

representing different gameplay sessions of single game, and supersets of data

representing the comparison of many games. Finally, by including even more

data, the historical patterns in game culture can be also visualized. (Since many

important historical games are available today in software emulation, this method

works well as a way to understand games history.)

Note once again the fundamental difference between capturing an interactive

media experience vs. the recording the experience of a static media document

(for example, doing eye movements recording while a person is watching a video

ad). Recording the video game player’s screen captures not just how you

experience but also the concrete media artifact constructed by a user and

30 For the examples of our projects using this method, see:
http://lab.softwarestudies.com/2008/06/videogameplayviz-analyzing-
temporal.html; http://lab.softwarestudies.com/2012/02/kingdom-
hearts-game-play-visualizations.html.

http://lab.softwarestudies.com/2008/06/videogameplayviz-analyzing-temporal.html
http://lab.softwarestudies.com/2008/06/videogameplayviz-analyzing-temporal.html
http://lab.softwarestudies.com/2012/02/kingdom-hearts-game-play-visualizations.html
http://lab.softwarestudies.com/2012/02/kingdom-hearts-game-play-visualizations.html

software during a particular session – in other words, the object of the

experience.

While at present researchers in game studies usually base their analysis on their

own engagement with interactive media, there are good reasons to propose that

a collection of such recordings - representing many sessions by many users -

should be taken as a basic "unit" of cultural analysis of this type of media. This

idea can also be extended to all other types of interactive media. Thus, along

with using her own experience of a particular interactive artifact, a researcher can

record a set of sessions (ideally, representing as many diverse users as

possible) which together will form a representative sample of the whole space of

possibilities which constitute the “interactive text.”

2. The specificity of interactive media also challenges the meaning of the concept

“big data” as applied to the study of culture. The already mentioned grant

programs that were established in 2008-2009 by U.S. National Endowment for

Humanities' Office for Digital Humanities have called for humanists to start

applying the computational techniques for large-scale data analysis already

standard in many areas of science. The description of the second joint NEH/NSF

Digging into Data Competition (2011) opened with these questions: “Now that we

have massive databases of materials used by scholars in the humanities and

social sciences -- ranging from digitized books, newspapers, and music to

transactional data like web searches, sensor data or cell phone records -- what

new, computationally-based research methods might we apply?31)

The big data paradigm is particularly relevant to the study of interactive media.

Because of the digitization efforts of libraries, museums, cultural heritage

organization and companies, scholars now have access to large volumes of

31 http://www.diggingintodata.org/.

http://www.google.com/url?q=http%3A%2F%2Fwww.diggingintodata.org%2F&sa=D&sntz=1&usg=AFQjCNFvZs5jnT0FTkBgoPIpmEP9WnaybA
http://www.google.com/url?q=http%3A%2F%2Fwww.diggingintodata.org%2F&sa=D&sntz=1&usg=AFQjCNFvZs5jnT0FTkBgoPIpmEP9WnaybA
http://www.google.com/url?q=http%3A%2F%2Fwww.diggingintodata.org%2F&sa=D&sntz=1&usg=AFQjCNFvZs5jnT0FTkBgoPIpmEP9WnaybA
http://www.google.com/url?q=http%3A%2F%2Fwww.diggingintodata.org%2F&sa=D&sntz=1&usg=AFQjCNFvZs5jnT0FTkBgoPIpmEP9WnaybA
http://www.google.com/url?q=http%3A%2F%2Fwww.diggingintodata.org%2F&sa=D&sntz=1&usg=AFQjCNFvZs5jnT0FTkBgoPIpmEP9WnaybA
http://www.google.com/url?q=http%3A%2F%2Fwww.diggingintodata.org%2F&sa=D&sntz=1&usg=AFQjCNFvZs5jnT0FTkBgoPIpmEP9WnaybA
http://www.google.com/url?q=http%3A%2F%2Fwww.diggingintodata.org%2F&sa=D&sntz=1&usg=AFQjCNFvZs5jnT0FTkBgoPIpmEP9WnaybA

cultural artifacts in “old media” that can be analyzed using computational

methods – millions of newspaper pages, books, maps, historical records, films,

and television programs. However, the numbers of digital cultural artifacts

available for research makes “big data” of traditional cultural archives rather

small in comparison. As an example, compare the following numbers. By 2010,

Google Books scanned over 15 million books32, Europeana provided access to

10 million digital cultural objects33, and ARTstor.org (a standard online resources

for teaching of art history today) hosted over a million digital images of artworks

contributed by many museums and collections. But with interactive media, the

numbers quickly run into billions: by the same 2010, archive.org hosted 150

billion web pages collected since 1995, while YouTube users were uploading 24

hours of new video every minute. And by early 2012, Facebok was reporting that

its users were uploading 7 billion photos every month.

But this is not all. Software-driven interactive culture does not only dramatically

scales up the numbers of media documents being created. It also makes each of

these documents potentially infinite in size. In other words, the “data” of digital

experiences not just big – it is infinite. Let me explain.

For non-interactive media artifacts, “big data” refers to the size - both the size of

physical or digital storage required by the media artifacts and the time required

by a human observer to “process” these artifacts (read the books, watch the

films, etc.) Consequently, while digitization created massive cultural datasets that

call for the use of computational methods to analyze them, these data sets are

finite. In the case of interactive digital media, “bigness” acquires a new meaning.

For example, let's say we want to study a particular video game. As we already

saw, such a game does not correspond to any singular text – instead, every time

a player engages with the game, this produces a different gameplay. Multiply this

32 “On the Future of Books.” Google. Accessed October 16, 2010.
33 http://version1.europeana.edu/”, accessed April 2, 2010.

http://version1.europeana.edu/

by many players, and the data expands dramatically. A study of one game now

involves analysis of thousands of hours of video that represent complete

gameplay sessions by multiple players. (Considering that a typical single player

game is designed to take approximately 40 hours to complete, if we capture only

10 complete sessions for each of 10 players, this already would result in 4000

hours of video.) Thus, while the game understood as text (or as a work) may be

quite small (the game engine and media assets adding up to a few GB), the

same game understood as interactive experience (or as a generative process) is

potentially infinite – since every game play session is unique. This means that we

start systematically analyzing interactive media in terms of actual user

engagements, we no longer dealing with simply big data – instead, we have to

embrace infinite data.

3. Since “software-driven media” is a particular case of software in general – that

is, it corresponds to one or more computer programs written in some standard

computer or scripting language which typically use a collection of media assets

(texts, 3D models, images, graphics, sounds) and user inpus to generate an

interactive experience – it is logical to ask if we can also analyze the code of

these programs. However, while the existence of code separate from the actual

«interactive text» experiences by the users is certainly one of the key defining

features of software culture, the actual study of software programs is not that

easy. It generates its own set of theoretical and methodological challenges.

Early software programs such as 1970s video games were relatively short. They

form the ideal objects for the code studies approach. However, in the case of any

contemporary commercial interactive media project, media application, or an

operating system (OS), the program code will simply be too long and complex to

allow a meaningful reading - plus you will have to examine all the code libraries it

uses.

Consider the following numbers. While Windows NT 3.1 (1993) is estimated to

contain 4-5 million source lines of code, Windows XP (2003) already contained

40 million.34 Praised for its elegance and simplicity in comparison with Windows,

MAC OS turns out even bigger, with OS X 10.4 (2006) containing 86 million lines.

And what about Adobe Creative Suite? The estimated number of lines for Adobe

CS 3 is 80 millions.35 (Gmail has faired better – it only has 443,000 lines of

Javascript.36)

But the size of software code is not the only problem. While the applications and

operating systems running on a single machine already have staggering

complexity, the gradual move of application software to the web brings with it a

new set of considerations. Let’s say we want to analyze ta web service, a web

app such as Gmai, or a dynamic web site. (In contrast to static web sites which

dominated early years of the web, in dynamic web sites the content of a page

can change depending on user’ actions. The examples of technologies used

today to create dynamic web sites are Javascript, Flash, PHP, Perl, and CGI.37)

Web services, web apps and dynamic web sites often use multi-tier software

architecture where a number of separate software modules (for example, a web

client, application server, and a database38) work together. Especially in the case

of large-scale commercial dynamic web site such as amazon.com, what the user

experiences as a single web page may involve continuos interactions between

dozens or even hundreds of separate software processes. (In 2009 Google

started development of a new programming language Go specifically targeted for

34 http://en.wikipedia.org/wiki/Source_lines_of_code, accessed
September 7, 2009.
35 http://www.craigfergusonimages.com/2007/03/80million-lines-of-
code-adobe-cs3/, accessed September 7, 2009.
36 http://www.infoworld.com/d/developer-world/google-executive-
frustrated-java-c-complexity-375, accessed March 29, 2012.
37 http://en.wikipedia.org/wiki/Dynamic_web_site, accessed
September 7, 2009.
38 http://en.wikipedia.org/wiki/Three-tier_(computing), accessed
September 3, 2008.

http://en.wikipedia.org/wiki/Source_lines_of_code
http://www.craigfergusonimages.com/2007/03/80million-lines-of-code-adobe-cs3/
http://www.craigfergusonimages.com/2007/03/80million-lines-of-code-adobe-cs3/
http://www.infoworld.com/d/developer-world/google-executive-frustrated-java-c-complexity-375
http://www.infoworld.com/d/developer-world/google-executive-frustrated-java-c-complexity-375
http://en.wikipedia.org/wiki/Dynamic_web_site
http://en.wikipedia.org/wiki/Three-tier_(computing

“big software” – “"large programs written by many developers, growing over time

to support networked services in the cloud: in short, server software.”39)

The complexity and distributed architecture of contemporary large-scale software

poses a serious challenge to the idea that to study interactive media is to study

the code of its software. However, even if a program is relatively short and a critic

understands exactly what the program is supposed to do by examining the code,

this understanding of the logical structure of the program can’t be translated into

envisioning the actual user experience. If it could, the process of extensive

testing with the actual users which all software and media companies go through

before they release new products (anything from a new software application to a

new game) would not be required, and the field of Human-Computer Interaction

would not need to exist.

The attraction of “reading the code” approach for humanities is that it creates an

illusion that we have a static and definite text that we can study – i.e., a program

listing. But this is an illusion, and we have to accept the fundamental variability of

the actual “software performance.” So rather than analyzing the code as an

abstract entity, we may instead trace how it is executed, or “performed,” in

particular user sessions. (Of course, this recording can be combined with other

recordings of the sensorial dimensions of interactive experience such as video

screen capture of gameplay I discussed earlier.) To use the terms from

linguistics, rather than thinking of the code as language, we may want to study it

as speech.

39 Rob Pike (co-designer of Go), quoted in Joe Brockmeier, “Google's
Go Programming Language Grows Up: Now What?”
http://www.readwriteweb.com/cloud/2012/03/googles-go-
programming-languag.php.

http://www.readwriteweb.com/cloud/author/joe-brockmeier-1.php
http://www.readwriteweb.com/cloud/2012/03/googles-go-programming-languag.php
http://www.readwriteweb.com/cloud/2012/03/googles-go-programming-languag.php

(Mark Marino and others working in “critical code studies” paradigm have been

promoting more nuanced, theoretically rigorous and rich ideas about what it

means to “read the code,” so this critique is only aimed at a naïve version of this

idea which I sometimes encounter in humanities. As Marino makes it clear in his

original presentation of this paradigm, “code” does not only refer to a program

listing but also includes software architecture40, which is particularly crucial in

large-scale software systems.)

What about another conceptual approach - comparing computer code to a music

score which gets interpreted during the performance (which suggests that music

theory can be used to understand software culture). While it appears promising,

is also limited since it can’t address the most important dimension of software-

driven media experience – interactivity.

The development of methods for the study of contemporary software, which

reduce its complexity to some more abstract representations, which can be then

discussed in articles, conferences, and public debates by non-programmers, is

certainly a key task for software studies. However, given both the complexity of

real life software systems and the fact that, at least at present, only a very small

number of media and cultural researchers are trained in software engineering, I

don't expect that we can solve this problem any time soon. (While the field of

software engineering developed a number of techniques to represent algorithms

and programs using high-level representations such as pseudo-code, flowcharts

and UML diagrams, understanding these representations does require basic

knowledge of programming.)

40 Mark Marino. “Critical Code Studies.” Electronic Book Review, 2006-
12-04.
http://www.electronicbookreview.com/thread/electropoetics/codology.

http://www.electronicbookreview.com/thread/electropoetics/codology

4. While the study and interpetation of software code is a challenging project, we

can take advantage of the more general property of software-created and

software-driven media which I would like to call "self-description." (A different

way of expressing this idea is to say that the digital media “texts” contain

statements in both the object language and the metalanguage.)

What do I meant by this “self-describing” characteristic? With practically all kinds

of digital media, some aspects of media structure, dynamic behavior, the

possible range of user interactive experiences, and the semantics are specified

in its "software layer.” This software layer can take a number of forms – HTML

code of a web page, XML document, After Effects’ “project file” describing the

details of a motion graphics project, or the actual programing code (such as the

code of a video game). Note that the program “code” is only one of these forms –

and in fact, its harder to analyze it because of the reasons I just went through

then other types of “software layers,” such markup languages (such as HTML,

XHTML or wiki markup), or blog templates.

Certainly, many “old media” formats also have self-describing elements, which

ease its automatic analysis. For exampe, the text of the play explictly names

each speaking character. An article is divided into sections, and if the names of

these sections are explit and clear, they provide a summary of the structure and

contents of the article. However, in digital media, such self-describing elements

are more systematic, more detailed, and they have to be present. Thus, a HTML

code of a web oage explictly specifies different types of media contained in this

page. Fhe following examples taken from a page on softwarestudies.com show

the code for including an image and a video file:

<a href="http://www.flickr.com/photos/culturevis/5109394222/" title="Manga Style
Space by culturevis, on Flickr"><img
src="http://farm2.staticflickr.com/1187/5109394222_2ce37492ae.jpg"
width="500" height="500" alt="Manga Style Space">

<iframe width="560" height="315"
src="http://www.youtube.com/embed/hd3HMrAIxw4?rel=0" frameborder="0"
allowfullscreen></iframe>

Here is another even more dramatic example of self-descibing characteristic of

digital media– a piece from a Postcript file which describes a line:

0.1 setlinewidth
2 2 newpath moveto
3 3 lineto
3 4 lineto
2 4 lineto
0 setgray
stroke

if we know Postscript language, we can understand that this part of the file

specifies a few connected strait lines – without having to see the actual rendered

image.

What is the reason for this precision and explictness of the codified descriptions

of content in digital media files? These descriptions are not written for a human

reader. (This, however, does not mean that we have to agree with the the

famous opening lines of Friedrich Kittler’s 1985 article There is No Software:

“The bulk of written texts - including this text - do not exist anymore in

perceivable time and space but in a computer memory's transistor cells.”)

Instead, they are read by a software program which renders the “media” (what

we see, hear, navigate, and interact with). And computer programs need explicit

instructions to do anything – be it displaying images and video in a web page

(first example), or simply drawing a vector line (second example).

(This consideration can be used to define digital media as follows: a media object

consist from data and a set of formalized instructions which describe this data

and tells media applications how to render them.)

http://www.ctheory.net/articles.aspx?id=74#bio

Focusing on this fundamental self-describing property of all types of digital media

opens it up to an exiting “big data” analysis. Rather than thinking about

interpeting the particular instances of programming code (which is usually not

available for commercial software anyway), we can instead use computers to

analyze patterns in the use of self-description elements of large sets of digital

media documents. For example, Mathew Fuller suggested that we could map the

evolution of web design by analyzing frequencies HTML tags of a large number

of the historical snapshots of web pages available on archive.org.41 I imagine a

study of the patterns in architectural design using commands histories

maintained by all design software. For example, we can ask architecture

students to make available the saved histories of their commands as they work

on their project, and then analyze the patterns in the use of these commands.

This idea can be also extended to all other types of design and authorship.

(Recall here the dream of Semantic Web to add semantic markup to every

document on the web – and if we ever get even remotely close, we will have

another amazing resource for analyzing cultural patterns.)

This method can be also applied to the study of computer code itself. Rather than

analyzing particular code listings manually, we can use big data approach,

automatically “reading code” and extracting patterns. For example, Jeremy

Douglass proposed that we can follow dissemination of the media techniques

and conventions by tracking the use of software libraries across software

systems and projects.42 Obviously, this brilliant idea would only work if we have

access to enough program listings. Luckily, because of the open-source

41 We developed this idea in our (unfunded) proposal to 2009 Digging
Into Data competition: Jeremy Douglass, Mathew Fuller, Olga
Goriounova, Lev Manovich, Digging Into Born Digital Data: Methods
For The Analysis Of Interactive Media, 2009.
42 Jeremy Douglass, “Include Genre”, presentation at Softwhere 2008
workshop, University of California, San Diego.
http://emerge.softwarestudies.com/files/11_Jeremy_Douglass.mov.

http://emerge.softwarestudies.com/files/11_Jeremy_Douglass.mov

movement, in every part of the software universe we now have widely used

equivalents of commercial products which are accessible to such analysis – for

example, Firefox browser (%25 market share as of 1/201243), or Blender 3D

software (ranked 5th in terms of usage in 201044). Other software type where this

“big code” (to use an analogy with “big data”) method would work include scripts

written in Perl, Python, MEL, Javascript and other languages, Blogger and

Wordpress templates, and any other software which is distributed in human-

readable (as opposed to binary) form.

In summary, the self-describing property of all digital media opens another

avenue for “big data” cultural analysis. Rather than only analyzing the visible

surfaces of interactive artifacts (for example, graphic and interactive designs of a

web site, its text and any other media elements), we can also analyze, visualize

the structures and patterns in "software layers" of these artifacts.

43 http://en.wikipedia.org/wiki/Firefox, accessed March 29, 2012.
44 http://www.blendernation.com/2010/04/18/cg-survey-initial-
results-in/, accessed March 29, 2012.

http://en.wikipedia.org/wiki/Firefox
http://www.blendernation.com/2010/04/18/cg-survey-initial-results-in/
http://www.blendernation.com/2010/04/18/cg-survey-initial-results-in/

	How to Follow Software Users
	How to Follow Software Users

