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ABSTRACT

Web data and computational models can play important roles in

analyzing cultural trends. The current study presents an analysis

of 23,492 sneaker images and metadata collected from a global

reselling shop, StockX.com. Based on data encompassing 22 years

from 1999 to 2020, we propose a sneaker design index that helps track
changes in the design characteristics of sneakers using a contrastive

learning method. Our data suggest that sneaker designs have been

employing brighter colors and lower hue and saturation values

over time. We also observe how popular brands have continued

to build their unique identities in shape-related design space. The

embedding analysis also predicts which sneakers will likely see a

high premium in the reselling market, suggesting viable algorithm-

driven investment and design strategies. The current work is one

of the first publicly available studies to analyze product design

evolution over a long historical period and has implications for

the novel use of Web data to understand cultural patterns that are

otherwise difficult to assess.

CCS CONCEPTS

• Computing methodologies→ Image representations; • Ap-

plied computing→ Consumer products; • Information systems

→Web mining.
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1 INTRODUCTION

The online reselling market is proliferating. One of the fastest-

growing sectors is fashion
1
, as noted by Anne-Marie Tomchak, a

former Vogue digital director, “there are literally tens of millions

of pounds worth of clothes sitting dormant in people’s wardrobes.”

Many reselling markets, such as eBay, Depop, Vinted, and Etsy,

have tens of millions of users, turning themselves into excellent

platforms for trading fashion items. Data accumulated within these

sites provide a unique opportunity to study how fashion trends

have evolved (or sometimes revolved) over a longitudinal period.

StockX.com is one such reselling marketplace for sneakers. It

facilitates auctions between sellers and buyers by verifying the

seller’s items and shipping them to international buyers. Now con-

sidered a multibillion-dollar business, the site offers data insights

into street fashion trends via its stock market-like price history

of transactions. To characterize long-term trends based on Web

data, we collected information about approximately 23,492 sneak-

ers from the site (Figure 1). The product images are utilized in a

neural network model to extract a low-dimensional embedding that

can explain characteristic design traits by jointly learning color

and shape attributes. This embedding, as we demonstrate, excels in

several practical tasks, such as the classification of sneaker designs

by brand, consumer type, release year, and the resale premium.

Our embedding is generated by a combination of computer vi-

sion techniques, including pretrained ResNet-18 and fine-tuning

with an unsupervised contrastive learning model. Unsupervised

contrastive learning is a machine learningmethod to classify similar

objects by bringing positive samples closer together while pushing

negative samples farther away in the embedding space [8]. Despite

the potential, conventional contrastive learning methods cannot

be used directly in data with multiple attributes. This is because

different visual features (such as color and shape) become entangled

into a single embedding space [43], hindering further analysis of

subjects with multiple visual aspects. We employ two innovative

modules to overcome this challenge: multiaugmentation to accom-

modate subtle variations in image styles (such as flipped, cropped,

or color-jittered images) and masking to create disentangled multi-

ple projection heads to represent key visual attributes such as color

and shape. As a result, our model can extract low-dimensional dis-

entangled visual semantics, enabling broader applications, such as

cultural analytics. Our technical novelty is to decompose the design

1
Forbes Magazine, 27 June 2021, https://tinyurl.com/y2czc5re.
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aspects by embedding and extracting the visual characteristics of

sneaker images. We consider a unique method that can apply to

other fashion items.

Based onWeb data spanning 22 years, the current researchmakes

the following contributions: 1) Feature engineering identifies an

overall design change that sneakers have becomemore pastel-toned

and brighter over time; 2) We present a novel neural-net-based em-

bedding that jointly considers color and shape information from

the given sneaker images; 3) The proposed embedding can infer

key cultural trends of sneakers, including the product category,

target consumer, and high reselling premium; 4) Based on the ex-

tracted latent representation, we learn that popular sneaker brands

are becoming similar in color choice, but more distinct in shape-

related design choice. To the best of our knowledge, these patterns

observed via large-scale Web data have not yet been studied.

Our research has several implications. We can envision new AI-

driven fashion consulting that can assist the industry in managing

their data, predict trend trajectories, and propose designs that could

be more sustainable (and hence produce less waste similar to AI-

driven food design) [34]. The state-of-the-art embedding model can

also be used to observe temporal patterns of other human artifacts

and cultural products beyond fashion, as it does not require any

other metadata besides images. This ensures domain-independent

learning and helps analyze long-term historic data.

Implementation details of the model and code are made available

via a repository at https://github.com/embSneakers/embSneakers.

Please see the Appendix for a description of the data distributions,

feature extraction methods, and comprehensive embedding results.

2 RELATEDWORKS

2.1 Fashion Trend Analysis

Fashion trends are cultural and social phenomena that have under-

gone constant changes. In the past, social scientists have tried to

study its underlying principles. Some trends are seasonal and short-

term, while others are more long-term. It can also be cyclical with

periodic revivals that give new life or can be repurposed as vintage.

The mechanisms behind fashion trends are multifaceted: they can

be both internal to the evolution of an object’s shape [26, 29, 36]

and the result of external social dynamics, such as people’s drive

toward differentiation and distinction within a group. Sociologist

George Simmel observed that fashion is the result of tension be-

tween the individual’s desire to conform to the dominant trends

in his group and his desire to be unique and stand out from the

crowd [37]. Later, Pierre Bourdieu defined the force of distinction

as the process explaining how people from a social group conform

to specific trends in taste, allowing them to separate themselves

from the taste of a different social group from which they want to

distance themselves [5].

These mechanisms partly explain how a few connoisseurs and

trendsetters first define the so-called “early adopters" of a trend

that becomes popular and mainstream over time. At the moment

in which many persons follow the trend, this becomes increasingly

fashionable for the trendsetters, who then abandon it to pass to

something new by setting a new cycle in motion. Trendsetters

might then revalue a trend that the majority had abandoned for a

long time. This makes the reselling market a viable industry. The

so-called hipster effect describes the search for exclusivity in trends,

especially by those who like to revive styles of the past, and the fact

that a global population of trend-conscious subjects, paradoxically,

follows this quest, leading to a counterintuitive and industry-driven

synchronization occurring among people who want to express

uniqueness via fashion [40].

Many fashion items enjoy a global market, and consumers ex-

change information via the Web. Trend dynamics are very similar

to financial markets, where few stockbrokers act upon exclusive in-

formation, followed by the mass of investors, generating a constant

fluctuation of stock values. The world of finance has always used

systematic and quantitative methods to capture these processes

while realizing the difficulty of creating predictive models. In fash-

ion, predictive models are even less systematic, as they are mostly

based on the subjective intuition of experts in trends and styles.

Fashion forecasting is an area of study and industry with a long

history whose effectiveness has been the subject of debate [4]. Only

in recent times can we witness the shift to quantitative analysis of

data in fashion forecasting [14, 15].

Initially, these studies were based on small datasets, such as im-

ages from specific catwalks [21]. Today, the development of compu-

tational methods for analyzing large databases offers the possibility

of conducting observations using Web-based data and machine

learning. Researchers in data science, social science, and digital

humanities have already published many studies that use compu-

tational methods to analyze changes in style, form, and content

in the literature, visual arts, popular music, and mass media over

long periods [1, 20]. In the fashion domain, images have been auto-

matically analyzed, for instance, for automated parsing of clothing

items [45], product identification, and style classification [22, 25].

Analysis on large databases allows us to discover broad general

trends, such as seasonal changes in clothing colors [16, 42], and to

detect and predict changes in fashion styles over space and time

that escape direct human observation [28, 30].

2.2 Contrastive Self-Supervised Learning

Limited availability of ground-truth data or annotations led to ad-

vances in self-supervised learning. Contrastive learning is one such

method to learn data distributions. Contrastive learning maximizes

the agreement between similar instances (or so-called positive sam-

ples) while minimizing the agreement among dissimilar instances

(negative samples). For example, SimCLR [8] defines an augmented

version of an image as positive and the other images in the same

batch as negatives. This work utilized image transformations such

as color jitter and horizontal flipping, which do not deform the un-

derlying characteristics so that the model can maintain the crucial

information during training. MoCo [9] employs a similar frame-

work but utilizes a momentum encoder and introduces a dynamic

dictionary with a queue.

Contrastive learning methods adopt the InfoNCE loss [32]. Mini-

mizing this loss maximizes the lower bound on the mutual informa-

tion between positive pairs, enabling the model to learn invariant

features against data augmentation. Due to the high representation

power, this concept is being widely utilized in various inference

tasks [17, 18]. However, the model becomes sensitive to the augmen-

tations in downstream tasks [39]. Thus, a recent work, LooC [43],

https://github.com/embSneakers/embSneakers
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proposed separating the embedding space and applying different

data augmentation techniques on each head, which successfully

improves the usability of the embeddings.

3 PROBLEM AND DATA

3.1 Research Questions

Our research questions are as follows. First, what can we learn

from the Web data about how sneakers as a mass fashion item

have evolved? (Section 3) Second, what models can explain latent

dimensions of formal and aesthetic trends from a large dataset?

(Section 4) Third, to what extent do embeddings of color and shape

differ by product type and reselling premium? (Section 5) Fourth,

what can we say about brand identity based on analysis? (Section

6) These questions are essential for understanding the evolution of

street fashion and deciding future designs and investment strategies.

We make use of the Web data to answer these questions.

3.2 Data Description

We collected sneaker images and their descriptive metadata from

StockX.com. As shown in Figure 1, we crawled all features offered

on the website, including the retail price, resale price history, show

images, brand, and release date. We found information for approx-

imately 23,492 sneakers from past years (e.g., the release year of

some sneakers goes back to 1985). The transaction data of prices

are available from 2012 since the platform’s launch. The product

images are in landscape resolution, so we added white padding to

the upper and lower parts to make them square images. We then

resized the images to 256×256 pixels to reduce the dimensions for

feature engineering and for using the ImageNet pretrained network

(i.e., ResNet with 18 layers). Pretraining with a large-scale dataset

ensures that the model captures generalizable visual characteristics

and helps create high-quality indices [10].

Figure 1: Snapshot of the information shownon StockX.com,

indicating product details and transaction price history.

©Photo by StockX, taken on October 20, 2021.

Prior to analysis, we removed any products without proper shoe

images, such as only showing a shoebox. The final data consti-

tute 11.0 gigabytes, including both images and metadata for 22,331

sneakers with valid images. We list the frequency distributions of

the retail price and reselling premium across brands and release

times in Figure 7 in the Appendix.

3.3 Metadata Exploratory Analysis

We examined the scale and temporal patterns seen in the metadata

of sneakers. Figure 2(a) shows that the product count and the brand

count on the reselling market have increased rapidly over the past

decade, as indicated by the exponential growth of the business. Since

the spring of 2019, quarterly transactions have reached a million

scale on the platform, and more than 10,000 unique items have been

sold every quarter (see Figure 8(a) in the Appendix).We define profit

or resale premium as 𝑝𝑟𝑖𝑐𝑒𝑟𝑒𝑠𝑎𝑙𝑒 −𝑝𝑟𝑖𝑐𝑒𝑟𝑒𝑡𝑎𝑖𝑙 per transaction where
every price was adjusted by accounting for inflation of the USD

(see Section B in the Appendix on how the adjustments are made).

As more sneakers are sold via the platform, the resale premium

per transaction tends to decrease. This trend is shown in Figure 2(c),

denoted by the median reselling premium of sneakers. A typical

transaction leads to a USD $60 ∼ $80 profit to the reseller, assuming

the reseller bought the product at retail price. However, the top

10% of sneakers with the highest premium transactions led to a

$320 ∼ $400 premium per sale, pointing to a substantial profit

considering the retail price of sneakers. The resale premium also

tends to increase over the sneaker’s age (i.e., release date), as shown

in Figure 2(b).

3.4 Image Exploratory Analysis

We employed feature engineering to examine temporal changes

in sneaker designs. We first segmented each image using a stan-

dard unsupervised image segmentation method by backpropagat-

ing partitions of an image into groups of pixels containing similar

traits [24]. Segmentation can be a useful method to systematically

remove the white background. Figure 3 shows one example with the

identified segments. We then extracted the following features on

the color attributes, distribution parameter, histogram, and entropy

from the background-removed images. Details of this method are

described in Section A in the Appendix.

Figure 3(b) shows changes in the HSV trends for sneakers re-

leased in the past five years. The plot shows quarterly averaged

trends. The hue value 𝐻 gradually decreases, indicating that larger

proportions of sneakers come in colors in the yellow-orange wheel.

The saturation value 𝑆 shows an overall decrease with seasonal fluc-

tuations, meaning that sneakers have become more pastel-toned.

These patterns may be attributed to the fact that sneakers target-

ing female consumers have grown in proportion.
2
Alternatively,

sneakers now adopt more novel colors than the blue-green wheel

to appeal to more diverse customers. Meanwhile, for the brightness

value𝑉 , more distinctive seasonal variations can be observed, with

a gradual increase in value over time. Specifically, sneakers tend to

become darker when targeted for the winter season in the Northern

Hemisphere (Q4) and lighter when targeted for the summer season

2
A report by ForwardPMX shows that the female sneaker market grew five times

faster than the male market from 2016 to 2017 in https://bit.ly/3m1XoD7.

https://bit.ly/3m1XoD7
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Figure 2: Data trends: (a) Quarterly item and brand counts based on the release date; (b) Quarterly median resale premium of

transacted sneakers based on the release date; (c) Quarterly median resale premium for all products and top 10% based on the

transaction date, with 1.0 standard error: prices were adjusted for inflation of US currency (USD). Note that the transaction

logs are available only from the platform’s launch year in 2012, whereas the sneakers’ release year may go back further.

(a) Unsupervised image segmentation example. © Photo by StockX

(b) Quarterly color trends of released sneakers in 2015–2020.

Figure 3: Segmentation example and HSV color model con-

structed within the extracted segments

(Q2). Note that products released in a given quarter typically target

the forthcoming season.

Our data analysis demonstrates that publicly available Web data

gathered from a reselling market can be used to analyze the design

evolution and those of high premium sneakers. However, one draw-

back of such an approach is that the derived features may not fully

represent the data since each feature captures limited aspects of the

products. We next investigate how to extract latent representations

or embeddings from the given sneaker images by minimizing the

loss of information while reducing the dimensions.

4 MODEL

The visual features of sneaker designs are learned via a neural net-

work model, as illustrated in Figure 4. We developed an embedding

model with two functions: (1) a multiaugmentation contrastive

learning framework and (2) a masking module for disentangling

representation. We explain conventional contrastive learning and

introduce the two innovations added in this work.

Unsupervised contrastive learning is a self-supervised method

that does not rely on ground-truth labels. Contrastive learning

assumes a pretext task that gathers representations of similar in-

stances (called positive samples) closer in the embedding space

while pushing away representations of dissimilar instances (called

negative samples). One may consider variations of the same sneaker

image (e.g., enlarged, cropped, flipped) as positive samples and con-

sider two separate sneaker images as negative samples. This method

can hence efficiently learn invariant features against data augmen-

tation. Formally, let D = {x𝑘 }𝑁𝑘=1 denote a set of training images

x𝑘 . Contrastive learning introduces the InfoNCE loss [8, 19], which

is defined as follows:

𝐿CL (z(1) , z(2) ) = − log

exp(sim(z(1) , z(2) )/𝜏)∑
z′∈ ˆB (−) exp(sim(z(1) , z′)/𝜏)

, (1)

where z(1) and z(2) are latent representations of two different views
of the target image x𝑘 and sim(·) is the cosine similarity function.

𝜏 is a temperature parameter (𝜏=0.5 in our case) that controls the

entropy of output: it should be positive, nonzero, and below 1.0 [8].

ˆB (−)
is the set of latent representations from batch images exclud-

ing x𝑘 . Optimizing this loss (i.e., pulling positive samples closer

and pushing away negative samples) maximizes the lower bound

on the mutual information between two different views [39].

A model must accurately learn the color choice’s distinct effect

and design sketches to handle fashion data. Therefore, the conven-

tional method is not suitable, as the learned representations lead to

“feature entanglement”, where different visual features are entan-

gled into the single embedding space, as identified by [43]. This in-

herent limitation led us to consider feature-specific heads.We added

different nonlinear projection heads for important design aspects,

focusing on the shape-invariance head and the color-invariance

head, as illustrated in Figure 4. Each head enables the model to

focus on a specific design aspect during training. Every training

head takes a different type of augmented view pair as input. We

generate multiple views for a given image x, by adopting different

augmentation strategies. For example, a predefined set of images

𝑇𝑠ℎ𝑎𝑝𝑒 consists of transformations that change only the shape infor-

mation of the given image to train the shape-invariance embedding.

Similarly,𝑇𝑐𝑜𝑙𝑜𝑟 includes a set of color-related transformations. We

used random resized crops and random horizontal flips for 𝑇𝑠ℎ𝑎𝑝𝑒
and random grayscale and color jitter for𝑇𝑐𝑜𝑙𝑜𝑟 .𝑇𝑎𝑙𝑙 is the union of
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Figure 4: Illustration of the design embeddingmodel. Shape, color, and combined attributes information become disentangled

via the newly added masking module. The contrastive objectives for different heads (i.e., ℎ𝑠ℎ𝑎𝑝𝑒 , ℎ𝑐𝑜𝑙𝑜𝑟 , and ℎ𝑎𝑙𝑙 ) are jointly

optimized in an end-to-end fashion. The shape-invariant head groups sneaker images by all features except for shape and, in

turn, allows the embedding to contain (mostly) color-related information (i.e., color embedding shown at the top right corner).

On the other hand, the color-invariance head groups images by all features except for color, which allows the embedding to

now learn (mostly) shape-related information (i.e., shape embedding at themiddle). The all-invariance head can accommodate

augmentations in both shape and color (i.e., combined embedding at the bottom).

the shape and color transformations (𝑇𝑎𝑙𝑙 = 𝑇𝑠ℎ𝑎𝑝𝑒 ∪𝑇𝑐𝑜𝑙𝑜𝑟 ) used

to train both shape- and color-invariance embedding.

We also employ a masking module to enhance the feature disen-

tanglement ability. The masking module has trainable parameters

and provides a weight vector that helps the model concentrate on

each design aspect. This is similar to the original attention tech-

nique [2, 41]. Themaskingmodule produces three different masking

vectors by applying the sigmoid function and making the scale from

0 to 1 (m𝑠ℎ𝑎𝑝𝑒 , m𝑐𝑜𝑙𝑜𝑟 and m𝑎𝑙𝑙 ∈ ℜ512
). Pointwise (or element-

wise) multiplication with these masking vectors is performed by

the encoder 𝑓 so that the model can focus on a specific aspect of

the input image for three different projection heads:

z𝑖 = ℎ𝑖 (m𝑖 ⊙ 𝑓 (x)), 𝑖 ∈ {shape, color, all}, (2)

where ⊙ is the pointwise multiplication operator, and ℎ𝑖 is the

projection head for each design aspect (i.e., shape, color, and all).

The loss objective for the projection head is denoted as follows:

𝐿 =
∑
𝑖

𝐿CL (z𝑖(1) , z
𝑖
(2) ), 𝑖 ∈ {shape, color, all}. (3)

This model does not require any domain-specific features or labels.

Hence, it can embed design patterns for other fashion items such as

handbags or hats. The only requirement is an ample set of images for

training. In addition, the proposed end-to-endmethod automatically

extracts semantically meaningful features when discriminating

images and is suitable for use as an innate design index. We next

consider several practical inference tasks to test the model’s efficacy

in the following section. Hereinafter, we refer to the embeddings

from each shape-invariance, color-invariance, and all-invariance

head as the color embedding, shape embedding, and combined

embedding, respectively.

5 EVALUATION

We evaluated the embedding model first with four inference tasks

and then via data visualization.

5.1 Quantitative Evaluation

We considered three hypothetical classification tasks based on data

attributes and transaction logs. In StockX.com, sneakers are la-

beled as belonging to one of 16 product categories, from which we

choose the top 8 classes by frequency. These categories include Adi-

das (N=4,123), Air Jordan (3,675), Air Max (2,839), Nike Basketball

(1,256), Air Force (1,213), Nike SB (816), LeBron (657), and Kobe

(428). The platform also assigns seven types of target consumers

for each sneaker, from which we chose the top 5 by frequency:

men (3,000), women (2,344), children (1,460), preschool (420), and

toddler (340). Given that classes are skewed, we chose a similar

number of products per class. For the reselling premium, we limited

the analysis to only sneakers with at least two transaction records

(11,848) and considered a binary class of ‘high (top-20 percentile of

the premium)’ and ‘low (the remaining)’ considering the heavy-tail

distribution.
3
We identified 9,478 sneakers for the low premium

group and 2,370 sneakers for the high premium group.

We assessed embeddings through three widely used off-the-shelf

classifiers: multinomial logistic regression, XGBoost, and MLP (mul-

tilayer perceptron) neural-net model. XGBoost was trained for 100

epochs with early stopping and a learning rate of 5e-2. MLP was

trained for 300 epochs with a learning rate of 1e-3 and a mini-batch

size of 4. We adjusted the number of layers for each embedding in

MLP according to its dimensions (e.g., 4 layers for 12 dimensions

and 6 layers for 524 dimensions). The data were split into 60%, 20%,

3
Premium refers to the difference in the maximum reselling price and the retail price,

adjusted by the inflation rate. One may use the average or the median price instead.



WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France. Park, et al.

and 20% for training, validation, and testing for all tasks. Training

details will be released via the repository link later.

Table 1 shows the evaluation results. Due to the page limit, we

present the results only for MLP; other results are provided in Sec-

tion C of the Appendix. As baselines, we ran classifiers based on

feature engineering of color, segmentation, and their concatenation.

For the concatenation of color and segmentation information, we

used the entropy of the color values that yielded the best perfor-

mance. All features were normalized to z-scores before training and
testing. As another baseline from the recent representation learning

domain, we used LooC ,which has shown the best performance

among contrastive learning models [43].

Our model yielded three representations after the masking mod-

ule: color, shape, and combined embedding. Following the sugges-

tion that the layer before the projection head has a reasonable qual-

ity for downstream tasks [8], we evaluated our model by freezing

the backbone network and removing the projection heads. We then

fit the classification and regression models on top of the learned

representations (512 dimensions). The combined representation

obtained from the all-invariance head showed the best results, out-

performing all baselines. While LooC only separates the embedding

space for each view (or the augmentation transformation) of the

images in an intertwined manner, our model further guides the

model to extract disentangled representations for each separated

head via a masking module.

As a result, the proposed model’s inference on the product cate-

gory shows an exceptionally high performance of 0.926 in the F1

score. Inference on the consumer type appears to be a more chal-

lenging task, yet our model gives the best result, with an F1 score

of 0.578. For predicting the reselling premium, the concatenation

of feature engineering yields the best RMSE result of .087, and our

model gives an RMSE of .096. However, our model shows the best

result in an MAE of .044. These results consistently demonstrate

that our embedding contains meaningful information for many

downstream tasks. The ablation results shown at the bottom of

Table 1 confirm that excluding any component from the model

degrades the performance substantially for all three inference tasks.

Furthermore, shape embedding was consistently better than color

embedding at predicting product categories, target consumers, and

high premium items.

5.2 Qualitative Evaluation

We also assessed the embedding by visualizing the clustering results.

The strength of our embedding model comes from the use of sepa-

rate heads. We obtained 128 dimensions of latent vectors on each

image from the three heads, color-invariance, shape-invariance,

and all-invariance,
4
by projecting each representation into L2-

normalized space. We then ran k-means clustering for each embed-

ding and reduced the dimensions by two via UMAP, a nonlinear

dimensionality reduction technique that has shown novelty over

existing visualization methods such as t-SNE [31]. Figure 5(a) shows

the final visualization for the color embedding. The clustering result

for the shape embedding is provided in Section D of the Appendix.

4
As explained in Figure 4, the combined embedding is produced by the

all-invariant head and groups sneaker images of the same design, ignoring

subtle color- and shape-related augmentations.

To qualitatively examine the images within clusters, Figure 5(b)

shows the nearest image samples for each centroid. We can observe

distinctive color patterns, where sneakers of similar colors appear

to be grouped within the same cluster. The number of clusters for

this embedding was determined to be six by the elbow method. The

first three authors qualitatively examined images within clusters

for the other two embeddings and confirmed that the sneakers are

well clustered by their color, shape, or combined attributes.

(a) K-means clustering result of the sneaker embedding

for the color attribute.

(b) Examples of sneaker products by cluster for the color attribute.

Figure 5: Centroids within clusters and their 15-nearest

neighbors based on color embedding. © Photo by StockX

6 EXPLORING TEMPORAL DESIGN

PATTERNS

The extracted embedding allows us to explore temporal changes

in designs over a particular subset of data, such as brands, product

categories, or specific features. For visual comprehensiveness, we

further used principal component analysis (PCA) to reduce the

embedding size to a single dimension, which we call the Sneaker
Design Index, thereby applying 1D PCA on top of the 2D UMAP

coordinates previously compressed for clustering. This approach is

taken to retain critical information, as reducing the dimension from

512 to 1 at once via PCA may break the local manifold structure

(i.e., neighbor relationship) among data samples [3]. Eventually, the

final 1D PCA coordinate on top of the 2D UMAP coordinates offers

an intuitive comparison of any two groups.



Using Web Data to Reveal 22-Year History of Sneaker Designs WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.

Classifier & Regressor: MLP (Neural-net) Primary Category Consumer Type Maximum Resale Premium

N = 15,007 sneakers N = 7,564 N = 11,848 N = 11,848

Attribute Feature Acc. F1 𝜅 Acc. F1 𝜅 Acc. F1 𝜅 RMSE MAE

Random 1 / 𝑛 Classes .167 (1/8) .200 (1/5) .500 (1/2) N/A (regression)

Feature Engineering:

Color Dist. parameter (12D) .352 .291 .140 .440 .377 .112 .787 .693 .000 .165 .142

Color Entropy (7D) .460 .387 .292 .419 .387 .113 .788 .696 .009 .167 .142

Color Histogram (128bin, 384D) .401 .391 .250 .403 .402 .141 .727 .702 .057 .095 .045

Segmentation Unsp. Image Seg. (5D) [24] .384 .265 .167 .408 .329 .098 .787 .693 .000 .169 .143

Concatenation Entropy + Segmentation (12D) .476 .401 .308 .401 .387 .123 .787 .693 .000 .087 .046

Contrastive Learning:

Color + Shape LooC (384D) [43] .882 .884 .854 .547 .548 .356 .767 .760 .238 .166 .142

Color + Shape Ours: All-inv. Rep. (512D) .926 .926 .909 .579 .578 .392 .790 .785 .314 .096 .044

Ablation Study:

Color Ours: Shape-inv. Rep. (512D) .799 .801 .751 .569 .571 .384 .776 .772 .276 .165 .142

Shape Ours: Color-inv. Rep. (512D) .839 .836 .801 .623 .623 .458 .800 .793 .334 .168 .143

Color + Shape Ours: 3 Rep. total (1536D) .928 .928 .751 .602 .604 .431 .795 .785 .301 .095 .043

Table 1: Results of inferring various classification and regression tasks utilizingMLP: see Table 2 in the Appendix for other classifiers (Acc.:

accuracy; 𝜅: Cohen’s kappa; Rep.: representation; RMSE: root mean square error; MAE: mean absolute error; the bold row demonstrates the

most significant error among the seven compared embeddings; the bottom three rows demonstrate the ablation study within our model).

Figure 6 shows the index trajectory for seven popular brands

known for their distinct styles. These brands had released over

500 sneaker kinds each, accounting for a total of 20,195 items in

our dataset. The plot shows the trajectory separately for the color

and shape embedding. We use data only from years with sufficient

observations, limiting the analysis to 22 years (1999–2020). The

plot shows a distinct trajectory per brand. For instance, Air Jordan

shows a downward trajectory in the color embedding in Figure 6(a),

whereas Nike shows an upward. In recent years, all brands’ design

indices have converged in terms of color embedding.

The shape embedding shown in Figure 3(b), in contrast, indicates

a different design evolution. While color trends have become more

similar across brands, the shape embedding continues to be similar

for most brands, except for Nike, whose shape design trajectory

continues to change, although in a consistent direction. The same

mechanics can be observed by examining the pairwise similarity

of brands. We computed the average pairwise similarity between

every two brands over a fixed time span t as follows:

Pairwise-Similarity
𝑡
(𝑖, 𝑗) =

∑D𝑡
𝑖

x
∑D𝑡

𝑗

x′ 𝑠𝑖𝑚(𝑥, 𝑥 ′)
|D𝑡

𝑖
| |D𝑡

𝑗
|

. (4)

whereD𝑡
𝑏
= {x𝑘 }𝑁𝑘=1 denotes a set of embeddings of sneaker images

x𝑘 within brand 𝑏. 𝑠𝑖𝑚(𝑖, 𝑗) is the cosine similarity of two sneaker

images 𝑖 and 𝑗 . These plots, binned by 3-months, are shown in

Figures 6(c) and (d). The similarity plots show trends for all brands

in the dataset, beyond the top seven brands.

The similarity of the color embedding continues to increase over

time, reaching a high average similarity of 0.620. Investigating the

HSV values of colors per brand, we consistently observe the trends

of sneakers adopting brighter colors and pastel-toned designs, as

shown in Figure 3(b). The shape embedding shows a lower correla-

tion of 0.390–0.425, although there were some changes over time.

The subtle increase in global similarity of the shape is likely caused

by the shift in Nike’s design, which reduced the distance across

all other brands. Other factors may affect the increment in shape

embedding distance; for example, some brands have gone through

mergers during the studied period (e.g., Adidas acquired Reebok in

2006, which might have led to design changes).

7 DISCUSSION AND CONCLUSION

Summary. The current study presented an unsupervised neural

embedding model of a mass fashion item mined from the Web.

We jointly utilized color and shape information to embed sneaker

designs from an extensive collection of Web images. This process

required no label information, and the training was performed

end to end. By further reducing the data dimensions, we proposed

the Sneaker Design Index, which is an intuitive method to track

design changes over time and across brands. Our data analysis

revealed patterns of convergence and uniqueness in the design of

major sneaker design houses over two decades.

Cultural analytics. The methodology and findings presented in

this paper have implications for better predicting fashion trends.

Our method can assist efforts in existing qualitative or nonneural

methods to understand style evolution inmass fashion. Data science

methods have practical uses in helping designers capture crucial

traits of fashion trends from massive data that are otherwise chal-

lenging to find manually. While the use of AI in the fashion industry

has focused on converting sales and automating processes, our re-

search is an early effort toward using AI to capture design trends.

We envision how the decades of sneaker trend trajectory identi-

fied by a neural net may assist the creative process of professional

and amateur designers. The trajectory of high premium items may

provide insight to designers in perceiving user perceptions of col-

lectible goods. Furthermore, customers can use the information to

anticipate new trends and plan investment strategies for collectors.
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Figure 6: Temporal sneaker design patterns by the brand via embeddings. (a) Color embedding with one standard error shadow

(the index values on the y-axis were normalized by min-max scaling); (b) Shape embedding; (c) Average pairwise cosine simi-

larity between the top-12 brands (see Eq 4) via color embedding; (d) Average pairwise cosine similarity via shape embedding.

Model interpretation. Regarding the higher prediction power

of the shape embedding compared to the color embedding in the

ablation study (see Table 1), we speculate that this observation also

aligns with the temporal patterns depicted by the Sneaker Design
Index. Brands shared a similar trajectory in terms of color choice

over the years yet sustained their particular shape-wise designs.

This can represent a challenge in classifying product categories or

reselling premiums. Nonetheless, our work shows potential for such

tasks, and we plan to expand our work to other human artifacts

(contents) and examine if this trait is coherent across various items.

This attempt will reveal what a core (backbone) attribute would be

depending on the content.

Business implications and future directions. There are many

exciting future directions. One is to utilize additional information

about sneakers, such as materials or user reviews. This information

was not readily available for all sneaker items in our dataset, yet

future research can combine such heterogeneous meta features for

analysis. One can use sentence embedding from language models,

such as BERT, to process text-based user reviews or product descrip-

tions [7, 35, 44]. Another approach is to collaborate with the fashion

industry of various other product types, extending the application

of the proposed model. For example, in terms of shapes, we may

also focus on dresses, jackets, or bags and examine their evolution

over a longitudinal period. In general, this content-analysis-based

approach could help analyze temporal patterns and design the evo-

lution of any human artifacts for which there are large-scale data,

contributing to cultural analytics.

Future directions for modeling. In terms of technique, our work

can be improved in the following ways. We want to adopt advanced

augmentation methods, such as CutMix [46], Autoaugment [12],

and RandomAugment [13], used in recent contrastive learning stud-

ies to better represent latent information. In contrastive learning,

CNN automatically learns the design characteristics that are help-

ful to discriminate between items. However, due to the black-box

nature of deep learning algorithms, it is difficult to identify which

particular feature contributes the most to the design index. For in-

terpretability, we plan to apply post hoc methods such as LIME [33]

and Saliency Maps [11] to visualize critical components. We could

also use metadata such as retail and reselling prices. The reselling

price can be considered a proxy of product popularity and adds

contextual meaning to any design change. Expert evaluation can

be used as feedback to improve machine learning predictions [23].

While StockX.com does not contain bidders’ geographic informa-

tion, other platforms (such as Flickr or Instagram, where hashtags

such as #sneakerhead account for 23 million images) may offer

metadata that would allow for analysis of the spatial location of

trends [28]. Our model is unsupervised, which means it can be

extended to additional features, such as materials and other fashion

items to allow broader applications. Moreover, our model provides

three projection heads that can focus on different attributes de-

pending on a given task in a disentangled manner, providing some

degree of interpretation of the model.
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Appendix

A FEATURE EXTRACTION METHODS

For the sneaker images, we constructed features from feature en-

gineering to examine temporal changes in sneaker designs. We

first constructed five segmentation-related features, number of seg-

ments, mean (𝜇) and standard deviation (std) for areas and perime-

ters of segments per image, i.e., a total of five dimensions (5D),

based on unsupervised image segmentation [24], as presented with

one example in Figure 3. Unsupervised image segmentation is a

well-established method that learns segmentation information im-

age by image via backpropagation that partitions an image into

groups of pixels containing similar traits.

We then extracted three features from the color attributes: distri-

bution parameter, histogram, and entropy. We extracted 𝜇 and std

for the RGB and HSV color models for the distribution parameter

(12D). R, G, and B in the RGB color model represent the red, green,

and blue colors, respectively, while H, S, and V in the HSV model

represent hue, saturation, and brightness (or value), respectively.

RGB and HSV are the most widely used color models in image

retrieval and computer vision [27]. For the histogram, we made 128

bins out of 256 values for each RGB channel, resulting in a total of

384D [6]. For color entropy, we computed the values based on the

equation below for RGB, HSV, and grayscale (7D) to particularly

conjecture brightness based on a given sneaker image [38].

𝐶𝑜𝑙𝑜𝑟 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆) = −Σ𝑚𝑖=0𝑝𝑖𝑙𝑜𝑔2 (𝑝𝑖 ), 𝑝𝑖 =
𝑓 𝑟𝑒𝑞(𝐶𝑖 , 𝑆)

|𝑆 | , (5)

where 𝑆 ∈ {𝑅,𝐺, 𝐵, 𝐻, 𝑆,𝑉 , 𝑔𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒}, 𝑚 = 255, 𝐶 = set of val-

ues within a class, and |𝑆 | = 65,536 (i.e., 256×256). Specifically, all
crawled images have white backgrounds, as shown on the left side

of Figure 3(a). To minimize the unintended effect of the background

when performing color feature engineering, we reconstructed tar-

get images by merging the extracted segmentation by image and

used pixels only within the reconstructed areas.

Figure 8: Additional data trends: (a) Released sneaker

product and corresponding brand volume trends by quar-

ter; (b) The median reselling premium trends for the

sneakers released in 2012-Q3 and 2014-Q3, respectively,

shown with one standard error: prices were adjusted

based on the inflation of US currency (USD).

B DISTRIBUTIONS AND PRICE FEATURES

Considering the reselling market first, the platform has boomed,

as shown in Figure 8(a). Based on the frequency distribution plots

in Figure 7, we observe that retail prices have not changed much

over 20 years. Concerning the characteristics of the reselling trans-

actions, only a handful of brands, such as Adidas Yeezy and Air

Jordan, obtain high resale premiums. Moreover, older sneaker

products appear to obtain higher resale premiums; this pattern is

also observed in Figure 8(b). We may interpret these findings as

indicating that people are more zealous toward classical or original

sneaker products. To compute the adjusted retail or resale price

considering inflation of the US currency, we retrieved the annual

purchasing power of the USD from the CPI library in Python, which

uses data from the US Bureau of Labor Statistics, and computed the

adjusted price as follows: 𝑝 ′𝑡 = 𝛾𝑡𝑝𝑡 , where 𝑝 is the raw price, 𝑝 ′ is
the adjusted price, 𝑡 is the target year, 𝛾 is the annual purchasing

power, and the baseline year (i.e., where 𝛾𝑡 = 1.0) is set to the

current year, 2021.

C CLASSIFICATION RESULTS

Linked to Section 5.1, we iterate running one classification task

on Primary Category with three classifiers, as reported in Ta-

ble 2: Multinomial Logistic Regression, XGBoost, and MLP. The

results are consistent with those in Table 1: our embedding model

outperformed other feature-engineered or SOTA models.

D VISUALIZATION OF SHAPE EMBEDDING

Expanding the discussion in Section 5.2, Figure 9(a) shows the

derived clusters and centroids therein for the shape attribute. The

optimal number of clusters is five, and we confirm that sneakers are

surprisingly well matched within the group based on their shape,

as presented by the centroids and their neighbors in Figure 9(b).

(a) K-means clustering of the embedding for the shape attribute.

(b) Sneaker examples by cluster for the shape attribute.

Figure 9: Centroids within clusters and their 15-nearest

neighbors based on shape embedding.
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(a) Frequency distributions of retail price and resale transaction price and corresponding premium across brands.

(b) Frequency distributions of retail price and resale transaction price and corresponding premium across release years.

Figure 7: Frequency distributions of price-related features by brand and release time, with bars showing one standard error.

N = 15,007 Sneaker Products Multinomial Logistic Regression XGBoost MLP (Neural-net)
Attribute Feature Acc. Pre. Rec. F1 𝜅 Acc. Pre. Rec. F1 𝜅 Acc. Pre. Rec. F1 𝜅

Random 1 / 8 Classes .167 — — — — .167 — — — — .167 — — — —

Feature Engineering:
Color Dist. parameter (12D) .209 .288 .209 .223 .084 .362 .250 .362 .289 .145 .352 .261 .352 .291 .140

Color Entropy (7D) .301 .392 .301 .323 .184 .462 .327 .462 .383 .289 .460 .337 .460 .387 .292

Color Histogram (128bin, 384D) .239 .355 .239 .274 .123 .430 .333 .430 .356 .242 .401 .388 .401 .391 .250

Segmentation Unsp. Image Seg. (5D) [24] .194 .275 .194 .188 .085 .359 .245 .359 .276 .137 .384 .203 .384 .265 .167

Concatenation Entropy + Segmentation (12D) .301 .411 .301 .327 .191 .469 .331 .469 .388 .297 .476 .389 .476 .401 .308

Contrastive Learning:
Color+Shape LooC (384D) [43] .855 .860 .855 .857 .821 .856 .853 .856 .850 .820 .882 .887 .882 .884 .854

Color+Shape Ours: all-inv. Rep (512D) .898 .899 .898 .898 .874 .905 .905 .905 .903 .882 .926 .927 .926 .926 .909

Ablation Study:
Color Ours: color-inv. Rep (512D) .901 .902 .901 .901 .877 .905 .905 .905 .903 .882 .839 .838 .839 .836 .801

Shape Ours: shape-inv. Rep (512D) .757 .767 .757 .761 .701 .819 .810 .819 .807 .772 .799 .804 .799 .801 .751

Color+Shape Ours: three Reps total (1536D) .893 .895 .893 .894 .868 .907 .907 .907 .905 .884 .928 .928 .928 .928 .751

Table 2: Results of predicting the Primary Category utilizing 3 off-the-shelf classifiers (𝜅: Cohen’s kappa; the bold row demonstrates the

most significant of seven embeddings compared; the bottom three rows demonstrate the ablation study within our model).

E CLARIFICATION OF HOW TO USE OBJECT

IMAGES TO BUILD DESIGN EMBEDDINGS

We used the sneaker images as an example cultural artifact. These

images were well prepared on StockX.comwith a white background.

We chose images with the same camera angle to control exogenous

factors, i.e., the current deep embedding model used one image

per sneaker. Regarding other domains, the same treatment (i.e.,

controlling the background and camera angle) would make it easier

to build the design embeddings.
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